Write your name here		
Surname	Other nam	nes
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
International Advar Unit 6: Practical Skills	nced Level	
	,	
Sample Assessment Materials for first		Paper Reference
Sample Assessment Materials for first Time: 1 hour 20 minutes		Paper Reference WCH16/01

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working in calculations and include units where appropriate.

Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- There is a Periodic Table on the back page of this paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

S58314A
©2018 Pearson Education Ltd.

(1)

Answer ALL the questions.

Write your answers in the spaces provided.

- 1 A series of tests was carried out on a pale green inorganic compound **A** which contained two cations and one anion.
 - (a) Dilute sodium hydroxide solution was added drop by drop to 5 cm³ of an aqueous solution of **A** until there was no further reaction.

(i) Give the **formula** of the cation in **A** shown by this test.

A green precipitate was formed which was filtered off and, after some time, turned into a brown solid.

(ii) Give the formula of the green precipitate.	(1)
(iii) Identify, by name or formula, the brown solid.	(1)
(iv) State the type of reaction that occurred when the green precipitate turned brown.	(1)
(v) Give the reason why dilute sodium hydroxide is added drop by drop when testing for cations.	(1)

(i) Describe a test and its positive result to show that the gas was alkaline.	(2)
(ii) Describe a further chemical test and its result to confirm that the gas was ammonia.	(2)
A 1 cm ³ sample of an aqueous solution of A was acidified with dilute hydrochloric acid and a few drops of barium chloride solution were added. A white precipitate was formed which identified the anion in A as the sulfate ion. (i) State the reason for the addition of dilute hydrochloric acid.	(1)
(ii) Bottles of solid barium chloride have the hazard label: Give a precaution, other than wearing lab coats and goggles, that would reduce the risk in preparing a solution of barium chloride. Justify your choice.	
d) Suggest a formula for A . Do not include water of crystallisation.	(1)
	(1)

2 A student was asked to investigate two liquids, labelled **X** and **Y**. One liquid was butanal and the other was butanone.

$$H_3C$$
— CH_2 — CH_2 — C

butanal

butanone

(a) Describe a test, including the expected observation, which would be positive for both liquids.

(2)

(b) Describe two chemical tests, including the expected observations, which each give a positive result with butanal and no reaction with butanone.

(4)

....

Test 2

(c) State what is observed when an alkaline solution of iodine is added to butanone and the mixture warmed.

(1)

(d) The high resolution proton nuclear magnetic resonance (NMR) spectrum of **X** is shown.

(i) Deduce the identity of substance **X**. Refer only to the peak with the asterisk(*) which is a singlet with a relative peak area of three.

(3)

(ii) The proton NMR spectrum has a small peak with a chemical shift, $\delta=0$ parts per million (ppm) which does not result from substance ${\bf X}$.

Explain the presence of this small peak, identifying the compound responsible.

(2)

(Total for Question 2 = 12 marks)

3 This question is about the preparation of a complex salt of cobalt(III).

The overall equation for the formation of this complex salt is:

$$2HNO_3 + 2Co(NO_3)_2.6H_2O + H_2O_2 + 10NH_3 \rightarrow 2Co(NH_3)_5(H_2O)(NO_3)_3 + 12H_2O.$$

Procedure

- Step **1** Add 3.6 g of hydrated cobalt(II) nitrate, Co(NO₃)₂.6H₂O, to 2.5 g of ammonium nitrate, NH₄NO₃, in a large beaker.
- Step 2 Add just enough hot water to dissolve the two salts.
- Step **3** Keeping the beaker warm on a hot plate, add 40 cm³ of aqueous ammonia.
- Over a period of about 30 minutes, add a total volume of 25 cm³ of 3.0% (3.0 g per 100 cm³) hydrogen peroxide to the mixture. Allow the mixture to cool.
- Step **5** Carefully add 40 cm³ of concentrated nitric acid to the mixture and leave to stand for a further 10 minutes.
- Step 6 To precipitate the complex salt, add cold ethanol to the mixture and filter the solid formed under reduced pressure.
- Step **7** Recrystallise the complex salt.
- (a) (i) The hydrogen peroxide is used to oxidise cobalt(II) to cobalt(III). The reduction half-equation is:

$$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$$
.

Deduce the ionic equation for the reaction of hydrogen peroxide with cobalt(II) ions.

State symbols are not required.

(1)

(ii) Show by calculation that there is sufficient hydrogen peroxide to oxidise all of the cobalt(II) ions.	(4)
(iii) In Step 4 , when an excess of hydrogen peroxide is added, bubbles are seen. The gas relights a glowing splint. Identify the gas and write an equation for the formation of this gas.	(2)
(b) State the purpose of ethanol in Step 6 and why it is cold.	(2)

(c)	Draw a labelled diagram of the apparatus used for filtration under reduced pressure in Step 6.	(3)
(4	This compley salt can be recrustallized using othered as the solvent	
(u	This complex salt can be recrystallised using ethanol as the solvent.	
	(i) State why the salt is dissolved in the minimum volume of hot ethanol.	(1)
	(ii) The hot solution is filtered. Name the type of impurities removed in this filtration.	(1)
	(iii) The solution is cooled and then filtered. Name the type of impurities removed in this filtration.	(1)
	(iv) Describe the final stage required to obtain pure crystals of the complex salt.	(2)

(e) (i)	One student found the yield of their complex salt to be 110%. Suggest a possible reason for this.	
	auggest a possible reason for this.	(1)
(ii)	A second student found the yield of their complex salt to be 80%.	
(11)	On reweighing their salt after 24 hours, their yield had decreased to 75%. Suggest a possible reason for this.	
		(1)
	(Total for Question 3 = 19 n	

4	A class of students was given an outline method for an experiment to determine the acid dissociation constant, K_a , of propanoic acid.													
	Step 1	Pipette 25.0 cm ³ of 0.1 mol dm ⁻³ propanoic acid into a conical flask.												
	Step 2	Add 3 or 4 drops of phenolphthalein indicator to the solution in the conical flask.												
	Step 3	Fill a burette with sodium hydroxide solution.												
	Step 4	Add the sodium hydroxide solution from the burette to the conical flask until a pale pink colour remains after swirling.												
	Step 5	Use a pipette to transfer a further 25.0 cm ³ of the propanoic acid to the solution in the conical flask.												
	Step 6	Use a pH meter to measure the pH of this mixture.												
	The tempe	erature of all solutions were maintained at 25 °C.												
		nd justify why, before carrying out Step 1 , the pipette should be rinsed ropanoic acid after rinsing with deionised water.	(1)											
		nd justify the effect, if any, on the value of K_a calculated if, in Step 3, there is pubble in the tip of the burette.												
			(1)											
	(c) At the conica	end of Step 4 , one student had a deep pink coloured solution in their I lask.												
	Give a reason for the presence of this colour.													

	TOTAL FOR PAPER = 50 MA	RKS
	(Total for Question 4 = 7 ma	arks)
		(2)
	Calculate K_a , including units, giving your answer to an appropriate number of significant figures.	
(f)	One student obtained a value of pH = 4.9 in Step 6 .	
		(1)
(e)	Describe how the pH meter should be calibrated before Step 6 .	
		(1)
	Calculate the percentage uncertainty when 25.0 cm ³ is added from the pipette.	
(u)	The measurement uncertainty of the pipette is ± 0.06 cm ³ .	

•	4	3
	Don	5
	9	5
ļ		_
	Ċ)
		2
1	מ	2
:	עולכ	7
•	כׁכ	2
(ā	5
Ī	9	ر

						_					_							_								_										
	0 (8)	(18)	4.0	He.	helium	7	20.2	Š	neon	10	39.9	Δr	argon	. 8	83.8	ᅐ	krypton	36	131.3	Xe	xenon	54	[222]	윤	radon 84	8		ted								
	7				(17)	()()	19.0	L.	fluorine	6	35.5	כ	chlorine	17	79.9	Я	bromine	35	126.9	П	iodine	53	[210]	Αt	astatine	6		een repor		175	3	lutetium 71		[257]	ב	lawrencium
	9				(44)	(01)	16.0	0	oxygen	∞	32.1	v	sulfur	16	79.0	Se	selenium	34	127.6	<u>e</u>	tellurium	52	[506]	8	polonium	5		116 have b	iticated	173	χ	ytterbium	2	[254]	2	nobelium lawrencium
	2				(15)	(61)	14.0	z	nitrogen	7	31.0	Δ	phosphorus	15	74.9	As	arsenic	33	121.8	Sb	antimony	51	209.0	Bi	bismuth	3		nbers 112-	but not ruily authenticated	169	Ē	thulium	6	[526]	PΨ	mendelevium
	4				(11)	(+/)	12.0	U	carbon	9	28.1	5	_		72.6	g	germanium	32	118.7	S	tin	20	207.2	Q	lead	70		atomic nur	DUT HOT IT	167	ш	erbium	8	[223]	E,	
	æ				(43)	(61)	10.8	ω	poron	2	27.0	٧	aluminium	13	2.69	g	gallium	31	114.8	Ę	mnipui	46	204.4	F	thallium 91	5		Elements with atomic numbers 112-116 have been reported		165	운	holmium 47	à	[254]	S :	einsteinium
						_								(12)	65.4	Zu	zinc	9	112.4	5	cadmium	48	200.6	£	mercury	8		Elem		163	2	dysprosium 6.6	3	[251]	ָל ָ	californium einsteinium
רנטוו														(11)	63.5	J	copper	29	107.9	Ag	silver	47	197.0	Αn	gold	ניבני	[7/7]	Rg	oentgenium 111	159		terbium 65	3	[245]		berkelium 67
ביווסחור ומחוב חו דובווובווני														(10)	58.7	Z	nickel	28	106.4	В	palladium	46	195.1	ፈ	platinum	0,75	_	S	darmstadtium 110	157	В	gadolinium	5	[247]	<u>ج</u>	curium
ומם														(6)	58.9	ප	cobalt	27	102.9	윤	rhodium	45	192.2	<u>1</u>	iridium 77	10,01	[897]		meitnerium 109	152	Eu	europium 63	S	[243]	Am:	americium
		,	?:	hvdrogen	-									(8)	55.8	Fe	iron	76	101.1	æ	ruthenium	44	190.2	õ	osmium 75	2 2	[//7]		nassium 108	150		samarium 62	70	[242]	2	plutonium
ווערע		7												0	54.9	W	manganese	25	[88]	2	technetium	43	186.2	Re	rhenium 75	5,52			107	[147]	Pa	promethium 61	5	[237]	Np Pu Am	neptunium
							mass	lod		nmper				(9)	52.0	ъ	chromium manganese	24	95.9	Wo	molybdenum technetium	42	183.8	>	tungsten 74	1,72	[997]	Sg	seaborgium 106	144	P	praseodymium neodymium promethium	3	22	-	uranium
					Kev	(3)	relative atomic mass	atomic symbol	пате	atomic (proton) number				(2)	50.9	>	vanadium	23	92.9	£	niobium	41	180.9	Тa	tantalum 72	ניייין			aubnium 105	141	F	praseodymium 50	ć	[231]	Pa	protactinium
							relati	ato		atomic				(4)	47.9	ï	titanium	22	91.2	Zr	zirconium	40	178.5	Ŧ	hafnium 72	27	[70]	*	nutherfordium	140	e C	cerium 58	8	232		thorium
														(3)	45.0	S	scandium	21	88.9	>	yttrium	39	138.9	La*	lanthanum 57	LECC1	[/77]	AC.	actinium 89		S		•			
	7				(0)	(2)	9.0	Be	beryllium	4	24.3	Wa	magnesium	12	40.1	g	calcium	20	87.6	Sr	strontium	38	137.3	Ва	barium 56	1777	[077]	Ka	radium 88		* Lanthanide series	* Actinide series				
	-				(4)	3	6.9	:5	lithium	٣	23.0	Ž	sodium	1	39.1	¥	potassium	19	85.5	2	rubidium	37	132.9	ర	caesium 55	ניניני	[577]	Ŀ	rrancium 87		* Lanth	* Actini				
						_																														